)

Check for

updates

R DIGITAL association oe
ACM@ LIBRARY o i @mq’e“)
£ Latest updates: https://dl.acm.org/doi/10.1145/3771923

RESEARCH-ARTICLE
M2CVD: Enhancing Vulnerability Understanding through Multi-Model
Collaboration for Code Vulnerability Detection

ZILIANG WANG, Peking University, Beijing, China
GE LI, Peking University, Beijing, China

JIA LI, Peking University, Beijing, China

JIA LI, Peking University, Beijing, China

MENG YAN, Chonggqing University, Chongging, China
YINGFEI XIONG, Peking University, Beijing, China

View all

Open Access Support provided by:
Peking University
Chonggqing University

PDF Download

q
'}\Q 3771923.pdf

16 January 2026
Total Citations: 2
Total Downloads: 375

Accepted: 09 October 2025
Revised: 08 July 2025
Received: 19 July 2024

Citation in BibTeX format

ACM Transactions on Software Engineering and Methodology

https://doi.org/10.1145/3771923
EISSN: 1557-7392

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3771923
https://dl.acm.org/doi/10.1145/3771923
https://dl.acm.org/doi/10.1145/contrib-99661735558
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-99659920764
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-99661733155
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-99661733154
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-99658743701
https://dl.acm.org/doi/10.1145/institution-60023380
https://dl.acm.org/doi/10.1145/contrib-81341498471
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/3771923
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/institution-60023380
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3771923&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3771923&domain=pdf&date_stamp=2025-10-16

M2CVD: Enhancing Vulnerability Understanding through
Multi-Model Collaboration for Code Vulnerability Detection

ZILIANG WANG, GE LI*, JIA LI &, and JIA LI, Key Lab of High Confidence Software Technology, MoE,
School of Computer Science, Peking University, China

MENG YAN, Chongqing University, China

YINGFEI XIONG and ZHI JIN, Key Lab of High Confidence Software Technology, MoE, School of Computer
Science, Peking University, China

Large Language Models (LLMs) have strong capabilities in code comprehension, but fine-tuning costs and semantic alignment
issues limit their project-specific optimization; conversely, fine-tuned models such as CodeBERT are easy to fine-tune, but
it is often difficult to learn vulnerability semantics from complex code languages. To address these challenges, this paper
introduces the Multi-Model Collaborative Vulnerability Detection approach (M2CVD) that leverages the strong capability of
analyzing vulnerability semantics from LLMs to improve the detection accuracy of fine-tuned models. M2CVD employs a novel
collaborative process: first enhancing the quality of vulnerability description produced by LLMs through the understanding of
project code by fine-tuned models, and then using these improved vulnerability descriptions to boost the detection accuracy
of fine-tuned models. M2CVD include three main phases: 1) Initial Vulnerability Detection: The initial vulnerability detection
is conducted by fine-tuning a detection model (e.g., CodeBERT) and interacting with an LLM (e.g., ChatGPT) respectively. The
vulnerability description will be generated by the LLM when the code is detected vulnerable by the LLM. 2) Vulnerability
Description Refinement: By informing the LLM of the vulnerability assessment results of the detection model, we refine the
vulnerability description by interacting with the LLM. Such refinement/can enhance LLM’s vulnerability understanding in
specific projects, effectively bridging the previously mentioned alignment gap; 3) Integrated Vulnerability Detection: M2CVD
integrates code fragment and the refined vulnerability descriptions inferred to form synthetic data. Then, the synthetic data is
used to fine-tune a validation model, optimize the defect feature learning efficiency of the model, and improve the detection
accuracy. We demonstrated M2CVD’s effectiveness on two real-world datasets, where M2CVD significantly outperformed
the baseline. In addition, we demonstrate that the M2CVD collaborative method can extend to other different LLMs and
fine-tuned models to improve their accuracy in vulnerability detection tasks.

CCS Concepts: « Do Not Use This Code — Generate the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper; Generate the Correct Terms for Your Paper.

Additional Key Words and Phrases: Vulnerability detection, Model collaboration, Large language model, Pre-trained models

“Corresponding author.

Authors’ Contact Information: Ziliang Wang, wangziliang@pku.edu.cn; Ge Li, lige@pku.edu.cn; Jia Li &', lijia@stu.pku.edu.cn; Jia Li,
lijlaa@pku.edu.cn, Key Lab of High Confidence Software Technology, MoE, School of Computer Science, Peking University, Beijing, China;
Meng Yan, Chongging University, Chongqing, China, mengy@cqu.edu.cn; Yingfei Xiong, xiongyf@pku.edu.cn; Zhi Jin, zhijin@sei.pku.edu.cn,
Key Lab of High Confidence Software Technology, MoE, School of Computer Science, Peking University, BeiJing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7392/2025/10-ART

https://doi.org/10.1145/3771923

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0000-0001-7534-0059
https://orcid.org/0000-0002-5828-0186
https://orcid.org/0000-0002-5579-8852
https://orcid.org/0000-0002-9411-971x
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0001-8991-747x
https://orcid.org/0000-0003-1087-226x
https://orcid.org/0000-0001-7534-0059
https://orcid.org/0000-0002-5828-0186
https://orcid.org/0000-0002-5579-8852
https://orcid.org/0000-0002-9411-971x
https://orcid.org/0000-0002-9538-9121
https://orcid.org/0000-0001-8991-747x
https://orcid.org/0000-0003-1087-226x
https://doi.org/10.1145/3771923

2 .« Ziliang Wang,Ge Li et al.

1 INTRODUCTION

Vulnerabilities in software refer to code weaknesses that can be easily exploited, which can lead to serious
consequences such as unauthorized information disclosure [15] and cyber extortion [43]. Recent statistics
underscore this burgeoning issue: In Q1 of 2022, the US National Vulnerability Database (NVD) disclosed
8,051 vulnerabilities, marking a 25% increase from the previous year [8]. Further accentuating this trend, a
study revealed that out of 2,409 analyzed codebases, 81% had at least one recognized open-source vulnerability.
The increasing scale and ubiquity of these vulnerabilities emphasize the need for well-developed automated
vulnerability detection mechanisms. Such a detection system helps to strengthen software security and forestall a
range of potential security risks [15, 20, 21, 43].

The vulnerability detection models in the existing literature are mainly divided into two categories: (1)
conventional detection models [48, 49] and (2) Deep Learning (DL)-based models [9, 12, 24, 27, 39]. The former
typically requires experts to manually formulate detection rules [6, 14]. These methods are usually labor-intensive
to create and are difficult to achieve low false positive rates and low false negative rates [26, 27]. On the contrary,
deep learning (DL) -based detection methods learn the patterns of vulnerabilities froma training set [9, 27, 28].
They avoid manual heuristic methods and autonomously learn and identify vulnerability features. In order to
further learn the semantics of vulnerabilities, methods based on fine-tuned models [34] and vulnerability detection
studies based on LLMs [16] have been proposed successively. In summary, traditional vulnerability detection
methods usually depend on pre-defined rules, a process of expert interventions, rendering them laborious and
occasionally imprecise. In contrast, the DL-based detection method can automatically learn the patterns of
vulnerable code [46].

In the latest research [41], the efficacy of pre-trained language models for software vulnerability detection
has been extensively explored, encompassing LLMs such as ChatGPT [36] and LLaMa [31], alongside fine-tuned
models like CodeBERT [13] and UniXcoder [17]. Compared with traditional deep learning networks, these models
show more excellent performance in code vulnerability detection tasks after fine-tuning [34]. Fig. 1 illustrates the
flow of code model fine-tuning.

Detecting vulnerabilities using pre-trained models has its benefits, but when it comes to real-world applications,
we encounter the first challenge that the complexity of code makes it hard for the fine-tuned model to
learn vulnerability semantics [42].

The pre-training datasets for fine-tuned models usually do not have vulnerability descriptions. Though fine-
tuned models can be fine-tuned-on a domain-specific vulnerability dataset, these datasets usually only contain
labels to show if a piece of code is vulnerable or not. Without vulnerability description, it would be difficult for
fine-tuned models to learn the actual cause of the vulnerabilities. For the same reason, existing vulnerability
detection methods usually enly output a vulnerability judgment indicating whether the code is vulnerable.

In contrast to existing approaches that use pattern matching to enhance vulnerability semantic [42], we resort
to the strong understanding abilities of LLMs to create natural language descriptions of vulnerable code, so as to
make connections between code and the causes of vulnerabilities. This will bring two benefits: the more abstract
natural language description will help the fine-tuned model better learn the semantics of the vulnerability, and
the vulnerability description can help programmers better determine the cause of the vulnerability to maintain
the code. In the latest research, this process is exploited for natural language understanding[33]. But we’ve hit the
second challenge, the semantic alignment problem of LLMs. Given the scale of LLMs, fine-tuning them on a
specific domain is challenging. Real projects, organizations, or specific fields have their own coding rules and
business logic. Using LLMs trained on data from open domain might not make accurate vulnerability judgment
on code in a specific domain (e.g., Fu et al. [16] reports a F1 score of 29% with GPT4). As a result, LLMs may
generate incorrect vulnerability description.

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection + 3

Vulnerable code

Fine tune
_ Code Model ——

_/O Vul-free code

(a) Existing vulnerability detection methods based on fine-tuning

LLM: [Vul or Vul-Free]
N a) Vulnerability Judgment Results

> LLM — i

b)eWulnerabilitysDescription

(b) Vulnerability Detection Process with Large Language Models

Fig. 1. Existing vulnerability detection method processes based on fine-tuned model fine-tuning and interactive vulnerability
detection processes based on large language models.

In this paper, we have proposed M2CVD, an innovative approach that combines the strengths of fine-tuned
models and LLMs to better detect vulnerabilities. For the first challenge, we rely on the ability of LLMs to
interpret vulnerabilities, leveraging the explanatory text to help fine-tuned models to understand the semantics
of vulnerabilities. For the second challenge, we rely on the advantage of fine-tuned models that is easy to fine-
tune, and use their judgment results to enhance the vulnerability semantic understanding of LLMs for specific
projects. In this way, M2CVD can help operators to improve the accuracy of vulnerability detection through
the collaborative interaction process combined with LLMs API without changing the existing fine-tuned model
structure. In summary, the main contributions of this paper are as follows:

a) We propose M2CVD; an approach that integrates the capabilities of fine-tuned models and LLMs to
better utilize their strengths for enhancing the precision of vulnerability detection tasks. Compared with
the existing vulnerability detection, M2CVD supports the output of vulnerability description to assist
programmers to maintain code.

b) This paper proposes a vulnerability description refinement method, which leverages the insights of fine-
tuning fine-tuned models on specific data to effectively enhance the vulnerability description generation
ability of unfine-tuned LLMs on project-specific domain code.

c) We evaluate our approach through extensive experimentation on two real-world datasets. Experimental
results show that the M2CVD can still improve the performance of code vulnerability detection with the
different of fine-tuned model and LLMs.

Data Availability. We open-source our replication package!, including the datasets and the source code of
M2CVD, to facilitate other researchers and practitioners to repeat our work and verify their studies.

10ur replication package (data and code) :https://github.com/HotFrom/M2CVD

ACM Trans. Softw. Eng. Methodol.

4 « Ziliang Wang,Ge Li et al.

Paper Organization. Section 2 describes the background of code vulnerability detection. Section 3 presents
our model M2CVD. Sections 4 and 5 describe the datasets and experiments of our study, respectively. Sections
6 provide an ablation experiment. Sections 7 discuss a case of M2CVD, respectively. Section 8 concludes the
discussion of M2CVD. And Section 9 includes summary of our approach and future directions.

2 RELATED WORK
2.1 Traditional Vulnerability Detection

Over the years, a lot of methods for vulnerability detection have emerged. Overall, initial research in this area
focused on identifying vulnerabilities by means of manually customized rules [6, 14]. While these approaches
provide heuristic approaches to vulnerability detection, they require extensive manual analysis and formulation
of defect patterns. In addition, syntactic elements are repeated in different code fragments, as prescribed by
certain rules, have been observed to induce elevated rates of both false positives and false negatives [26, 48, 49].

2.2 Deep Neural Network for Vulnerability Detection

To minimize human intervention, recent works have turned to employing neural network-based models for
the extraction of vulnerability features from code fragments [9, 39]. Existing deep learning-based vulnerability
detection models predominantly bifurcate into two classifications: token-based and graph-based models.

Token-based models treat code as a linear sequence and use neural networks to learn vulnerability features
from known cases, aiming to identify previously undetected vulnerabilities. [7, 27, 39]. For instance, Russell et al.
harnessed the power of both recurrent neural networks (RNNs) and convolutional neural networks (CNNs) to
learn feature sets from code token sequences tailored for vulnerability identification [39]. Concurrently, Li et
al. [27] employed BiLSTM [40] to encode a segmented version of input code, known as ’code gadget’, centered on
key markers, especially library/API function calls. However, these token-based models often ignore the complexity
of the source code structure, which may lead to inaccurate detection.

While focusing on token-based models, another research direction is to reveal the potential of graph-based
methods in the field of vulnerability detection [4, 24, 34, 51]. DeepWukong [7] utilizes GNN for feature learning,
which focuses on compressing code fragments into a dense, low-dimensional vector space to enhance the detection
of a large number of vulnerability types. DeepTective [37] confronts vulnerabilities common to PHP scripts
such as SQL injection, Cross-Site Scripting (XSS), and command injection by deploying a combination of Gated
Recurrent Units (GRUs) and Graph Convolutional Networks.

Graph-based detection models learn code structure through varied graph representations, utilizing neural
networks for vulnerability detection [3, 47]. For instance, Zhou et al. [52] used the gated graph recurrent
network [25], extracting structural details from triadic graph representations—AST, CFG, and DFG. Chakraborty
et al. [4] introduced REVEAL, an innovative approach that amalgamation of the gated graph neural network,
re-sampling techniques [5], and triplet loss [32]. Wu et al. [47] proposed a approach that can efficiently convert
the source code of a function into an image while preserving the program details. Meanwhile, Cao et al. [3]
proposed a statement-centric approach, based on flow-sensitive graph neural network, to understanding semantic
and structural data.

2.3 Pre-Trained Models for Vulnerability Detection

Taking inspiration from the success of pre-trained models in the field of natural language processing (NLP),
an increase of related research works aims to leverage these pre-trained models to improve code vulnerability
detection accuracy [2, 13, 17, 22, 29, 35].

The core idea of these works is a pre-trained model on a large amount of source code data, followed by specialized
fine-tuning for a specific task. [22]. To illustrate, Feng et al. [13] proposed CodeBERT specifically for understanding

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection + 5

1
:: Phase I1: Vulnerability Description Refinement
1

:E Prompt-2:

1

You are a senior [YesiNo] d Un-Vulnerable Validation (/) + * :

L, | programmer. Please Consistent | Mode i
evaluate the code below for [Vulnerability N +

vulnerabilities. If you... LLM description] N

1

1

i

1

R 1" 1

Detection Inconsistent | A expert has found that the code [Yes/No] !

Model 5 (don’t) have vulnerabilities [—— — [Vulnerability 1

il (['Yes/No]), please recheck it. description] i

= i LLM '
|: |

D e o o e o o e o o e e o o e o Y 1

) T - ,
" Phaselll : Integrated Vulnerability Detection !

" 1

Code i :
N v T G Y 2t St

Prompt-1: 3 — @ N = i

1

1

1

1

1

1

1

Vulnerable Description

Fig. 2. The framework of M2CVD, which mainly contains three phase: 1. Initial vulnerability detection; 2. vulnerability
description refinement and 3. Integrated vulnerability detection. The detection model uses historical vulnerability data to
fine-tune, and then fine-tunes the validation model after the historical vulnerability data is supplemented by vulnerability
semantics in phase 1 and phase 2.

and generating source code, which combines the processing power of natural and programming languages.
Similarly, CuBERT combines masked language modeling with sentence prediction for code representation [22]. In
addition, some pre-trained models also take the structural information of the code fragment into account in the
initial training phase [29, 35]. For example, Guo et al.'s GraphCodeBERT [19] to infer different in the data flow of
code fragments with the help of graph structures. DOBE [23] introduces a novel pre-training objective predicated,
explore whether such pre-training can enhance the model’s ability to learn the syntactic and structural complexity
of source code. The objective is specifically tailored to address the structural dimension of programming languages.
Concurrently, to enhance the graph-based representation, GraphCodeBERT [18] proposed a pre-trained schema
to seamlessly insert graph structure into Transformer-based architectures. This is achieved through the innovative
use of graph-guided masked attention mechanisms, designed to mitigate noise in the data. The comparative
evaluation positions CodeBERT as a baseline standard, which is a very classic fine-tuned model in a series of
code-related tasks, including code clone detection and code translation. At the same time, UniXcoder as the
latest fine-tuned model will also be done as a baseline method. UniXcoder, a unified cross-modal pre-trained
programming language model, is trained on a large amount of code data as well as natural language data [17].

Since these pre-trained models have shown superior performance in various code-related tasks, some studies
have attempted to use these models for vulnerability detection [15, 19, 43]. However, if these models are directly
used for vulnerability detection after fine-tuning with code data, they face the challenge of capturing vulnerability
features from long code and complex structure [50]. Moreover, due to the nature of code data, the lack of
vulnerability semantics information prevents these multi-modal models from taking full advantage of them.
Therefore, we try to supplement the vulnerability semantics in the existing code data to reduce the cost of
modeling and searching vulnerability features in complex code data.

3 APPROACH

In general, M2CVD requires three models to work together, including detection model f;,validation model f,

and LLM f;, and relies on the collaborative interaction of f; and f; to assist the enhancement of f, model in the

vulnerability detection task. The overall framework of M2CVD as shown in Fig. 2, consisting of three phases:
1) Phase I generates preliminary judgments and vulnerability descriptions with the help of f. and f;.

ACM Trans. Softw. Eng. Methodol.

6 « Ziliang Wang,Ge Li et al.

2) In phase II, the judgments that are inconsistent with f, and f; in Phase I will be judged and described by f-
for the second time.

3) The last phase uses the vulnerability text to enhance the vulnerability detection ability of f,.

In the default configuration of this paper, the fine-tuned model used by M2CVD is UnixCoder and LLM is
ChatGPT 3.5.

3.1 Initial Vulnerability Detection

We use L = (P,Y) to represent the historical vulnerability dataset, where p; represents a code snippet in a
programming language, and y; represents vulnerability labels, 0 < i < M. The M is the number of code snippet.
The values of y; are 0 or 1. When y; = 1, it indicates that the code is free of vulnerabilities; conversely, it indicates
a vulnerability in the code.

First, we split the vulnerability dataset L into a training set p; and a validation set p,,. In the inference phase,
the code to be detected is denoted as p,. Then, we fine-tune the detection model using p;. According to the
methods provided by the existing literature [41], the detection model f; is obtained by fine-tuning on the historical
vulnerability data.

After obtaining the detection model, the vulnerability assessment of the detection model and the vulnerability
assessment and description of the LLM are obtained through the following two steps:

1) Generation of the assessment with detection model.

We need to use the detection model to complete the preliminary vulnerability assessment for L. The specific
steps for this are:

zi = fa(pi),0 <i< M (1)

where f; represents the prediction step of the detection model, and z; denotes the detection model’s assessment
of code snippet p;. If the model determines that p; contains a vulnerability, then z; = 0; otherwise, z; = 1.

2) Generation of the assessment and description with LLMs. In this step, we conduct an initial vulnerability
assessment and description of p;, p,, pe through an interactive approach using ChatGPT. We use the following
prompt to obtain LLM’s assessment and description:

User:You are a senior programmer. Please evaluate the code below for vulnerabilities. If you believe
there are vulnerabilities, reply starting with *Yes” and briefly explain the issue; otherwise, begin
with 'No’.

Code: int ff_get_wav_header(AVFormatContext “s, AVIOContext “pb

LLM: [Yes][Vulnerability description] or [No]

Following the above mentioned steps, M2CVD obtains the vulnerability assessment and description form LLMs.
The formalized procedure is detailed as follows:

Ci,hj = fc(p,),O <i<M (2)

By analyzing the responses from the LLM, M2CVD obtains a vulnerability assessment c. If the LLM determines
the code p; to be vulnerable and replies with “Yes”, then ¢; = 0. Concurrently, M2CVD records the vulnerability
description n; provided by the LLM. If the LLM determines that the code is not vulnerable, ¢; = 1 and n; is set to
null.

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection + 7

3.2 Vulnerability Description Refinement

Through the process described above, we obtained two vulnerability assessments from the detection models
and the LLM, as well as a vulnerability description from the LLM. In Phase II, we need to further refine the
vulnerability assessments and descriptions from the LLM.

In this section involves a comparative analysis of the vulnerability assessments. In the case of an inconsistency
between assessments, LLMs can be informed of the vulnerability assessment derived from the detection model.
The second interaction enables the LLM to obtain the assessment result of the detection model that fine-tuned
based on the historical data, which may enable the LLMs to regenerate its vulnerability assessment and description.
The prompt for Phase II is as follows:

User: You are a senior programmer
Code: int ff_get_wav_header(AVFormatContext *s, AVIOCon

LLM: [Yes][Vulnerability description] or [No]

User: Another expert has found that the code [does not] have vulnerabilities; please recheck it,
and If you believe there are vulnerabilities, reply starting with *Yes’ and briefly explain the issue;

3%

otherwise, begin with ’No’.

LLM: [Yes][Vulnerability description] or [No]

Limiting Phase II to code fragments with divergent prediction outcomes can significantly reduce LLM inference
time. M2CVD then proceeds to refine the vulnerability descriptions based on this streamlined approach:

Ci, N if Ci == 7Zj
ci,n; = 3)
folpi,zi) else

When the assessment results from both models are consistent, the interaction with ChatGPT is terminated. This
also means that the refinement process does not trigger. When the models yield inconsistent assessments, i.e.,
¢; # zi, a second round of interaction is initiated using the aforementioned prompt. The values of ¢; and n; are
updated accordingly.

3.3 Integrated Vulnerability Detection

In Phase III, M2CVD leverages the vulnerability assessments and vulnerability descriptions from the LLM to
supplement the vulnerability semantics of the vulnerability code. Initially, we restructure the input dataset L
such that L, = (P, C, N, Y). Here, C represents the LLM’s assessment, while N denotes the LLM’s description of
the vulnerability in the code segment.

When the LLM determines that a code segment has a vulnerability, it typically generates a vulnerability
description consisting of N tokens (including the vulnerability assessment “YES” or “NO”), which are directly
concatenated to the end of the code. If the LLM determines that the code segment does not have a vulnerability,
only the LLM-generated assessment “NO” is concatenated.

As shown in Fig. 3, after integrating the vulnerability semantics into the dataset L. = (P, C, N, Y), the validation
model f, was obtained by fine-tuning. The training details of the validation model are consistent with the training
process of the detection model. At this point, the training dataset already contains the semantic descriptions of
the vulnerability code distilled by the LLM, along with the vulnerability judgment feature tokens (Yes or No)
generated by the LLM. The validation model will be fine-tuned on the sample data based on the ground truth
labels.

ACM Trans. Softw. Eng. Methodol.

8 « Ziliang Wang,Ge Li et al.

Code LLM's assessment

A A
I 1

I 1
int ff_get wav_header(AVFormatContext *s,.. \n No,

int ff_get wav_header(AVFormatContext *s,.. \n Yes.

T
Vulnerability description

Fig. 3. The data integration process in two cases.

Algorithm 1 M2CVD

Require: L = (P,Y), fine-tuned model f3,f,,LLM:f,

1: Split the dataset L into py, po, pe
: Fine-tune the detection model f; through p;
: The assessment results of detection models on the dataset were calculated: z; = f;(p;)
: for i =1to len(p;) do
civni = fe(pi)
if z; # ¢; then

ci- i = fe(pir zi)
end if
. end for
: The new data: p;. =pi+n;
: Fine-tune the validation model f, through p,, p,

#Inference phase
12: if f3(p,) == fo(p,) == Vul then
13: The assessment results of the validation model are calculated: §j = fu(p;)

-
- O

14: else
15§ = folpe)
16: end if

17: return. g

Data Identically Distributed Guarantee. For the fine-tuning process of the validation model, it is crucial to
ensure that the training set undergoes both Phase I and II for filling in vulnerability semantics. This approach
differs significantly from merely using a vulnerability label for semantic completion via the LLM. We have found
that limiting the enhancement of code vulnerability semantics to only those with identified vulnerabilities in
the training set can lead to overfitting in the validation model. Therefore, in order to ensure that the training
set and the validation test data remain identically distributed as much as possible, it is necessary to prohibit
directly informing LLM data labels during the vulnerability semantic generation process in Phases I and II. This
necessity occasionally leads ChatGPT to erroneously add semantics to codes perceived as vulnerable. Nevertheless,

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection + 9

maintaining the same data source during both the training and inference phases, while integrating a degree of
noise, has effectively increased the robustness of the validation model.

3.4 Inference Phase

In the inference phase as shown in algorithmic 1, we follow phases 1 and 2 to get the LLM’s vulnerability
description n and assessment c for the code to be detected p.. Considering that vulnerabilities pose a great risk to
software operation. If both the results of the detection model and the results of the LLM believe that the code
is vulnerable, the detection result § = c; is directly adopted. When in other situations, the validation model
performs the inference as described in the original procedure. Specifically, the input to the validation model will
be p, =< pe, ¢, n >, and the final output is calculated by the validation model:

Jini = fo(p,),0 <i <M (4)

Here, y; signifies the ultimate assessment result corresponding to p,. n; is the vulnerability description of the
code to be tested. After the M2CVD process, n; can be used to assist programmers to modify the vulnerability.
The inference of the detection model and LLM for the code under test are performed simultaneously, and usually
the inference time of LLM is greater than that of the detection model. Therefore, the inference cost is the time to
call the LLM API plus the time with the validation model.

3.5 Implementation Details

The loss function adopted for the fine-tuned models training is the cross-entropy loss [52], commonly used in
classification problems for its effectiveness in penalizing the predicted labels and the actual labels:

H(y,79) = —ylog(g) - (1 - y) log(1=179) ()
M2CVD has two processes of model fine-tuning, in-which the fine-tuning process of the first detection model
adopts the best performance parameters reported by the existing fine-tuned model, specifically referring to?.
The detection model is trained for 4 epochs, with a maximum sequence length of 1024 tokens, which is the
default for UniXcoder. Code sequences exceeding the maximum input length are automatically truncated to
comply with the model’s input constraints. The batch size for training is 12. The learning rate is set to 2e-5, and
gradient clipping is applied with a maximum gradient norm of 1.0. These hyperparameters are selected based
on prior experiments to balance model performance and training efficiency. After completing the vulnerability
assessment report, M2CVD implements the validation model fine-tuning process, in which epoch is 4. The
maximum sequence length follows the base UniXcoder setting (1024 tokens). In this paper, the learning rate is
2e-5, and the batch size is 12.In this experiment, three V100s-32G GPUs were used for training, and the training
time of each epoch'was about 9 minutes 20s. For reproducibility, all LLM calls are made with the sampling
temperature fixed to 0.

4 EXPERIMENTS
4.1 Datesets

To evaluate the effectiveness of M2CVD, we employ two datasets from real projects :(1) Devign [52], and (2)
Reveal [4]. The Devign dataset, derived from a graph-based code vulnerability detection study [52], stands as a
dataset of function-level C/C++ source code from the well-established open-source projects QEMU and FFmpeg.
as shown in table 1, aligning with the methodology articulated by Li et al. [52], the partitioning of the Devign
dataset adheres to a conventional 80:10:10 ratio, demarcating the bounds for training, validation, and testing
data, respectively. The dataset completes the labeling of vulnerable code by a group of security researchers

Zhttps://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/Defect-detection

ACM Trans. Softw. Eng. Methodol.

10 « Ziliang Wang,Ge Li et al.

Dataset Projects Total Samples Vulnerable Samples Non-Vulnerable Samples
Devign QEMU, FFmpeg 27,318 12,460 14,858
Reveal Debian, Chromium 22,734 2,240 20,494

Table 1. Summary of Datasets Used for Vulnerability Detection

performing a rigorous two-stage review. In the task of software vulnerability detection, the REVEAL dataset is a
representative dataset, as presented in [4]. It is a further exploration of data redundancy and unrepresentative
class distributions in existing datasets. As a detection code dataset, REVEAL encompasses source code extracted
from two open-source forays: the Linux Debian kernel and Chromium. Similar to the real-world situation, this
dataset has an imbalanced label distribution, with the number of normal code fragments much larger than the
number of vulnerable ones (10:1). Similarly, in the Reveal dataset, a split ratio of 80:10:10 was set [11].

During the experiment, the proportion of positive and negative samples in the training set, validation set and
test set is consistent with the original dataset.

4.2 Performance Metrics

In the process of evaluating the performance of the model, the proposed method includes three metrics widely
recognized in the field of software testing and analysis[52]:

Precision: Denoted as the quotient of the sum of true positives and false positives and is a measure of the
accuracy of instances that are identified as positive. Formally, it is defined as:

Precisiome <1t ©)
recision = TP +FP

where TP and FP represent the number of true positives and false positives, respectively.
Recall: Recall evaluates the fraction of actual positives that are correctly identified and is calculated as the
fraction of true positives over the sum of true positives and false negatives:

TP

Recall = ————
TP+ FN

(7)

where FN signifies the number of false negatives.
F1 Score: The F1 score provides an indicator of the accuracy of the test by combining precision and recall into
a single metric by taking their harmonic mean:
Precision X Recall

F1 Score =2 X — (8)
Precision + Recall

Accuracy: This metric reflects the proportion of true positives and true negatives amongst all evaluated
instances, thus offering an overall measure of the model’s performance:

B TP+TN
ccuracy =
Y= TP+ TIN+FN+FP

where TN representing the number of true negatives.

REVEAL is an imbalanced dataset, so we emphasize the use of F1 as the evaluation metric [11]. The designed
dataset is balanced, so we follow the original benchmark to report the classification accuracy [52].

Since the model performance can vary with different random seeds [41], we used the random seed setting
commonly used in existing open source methods, seed=42 [11, 13].

©)

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection « 11

4.3 Baseline Methods

In our evaluation, we compare M2CVD with seven state-of-the-art methods.

(1) ChatGPT [36]: The GPT series models showcases the capabilities of DL in text generation and processing,
albeit not specifically tailored for the domain of software vulnerability detection. ChatGPT 3.5 provides the ability
to abstract code vulnerabilities at a lower cost.

(2) Devign [52]: Devign is a graph-based model that uses Gated Graph Recurrent network (GGN) to represent
the graph combining AST, CFG, DFG and code sequence of the input code fragment for vulnerability detection.

(3) ReGVD [34]: ReGVD treats the problem as text classification by transforming the source code into a graph
structure, using token embedding from GraphCodeBERT [18], and applying a mixture of graph-level sum and
max-pooling techniques.

(4) CodeBERT [13]: CodeBERT use a pre-trained structure that amalgamates natural language and programming
language, facilitating a broad spectrum of coding tasks, including but not limited to code understanding and
generation.

(5) CodeT5 [44]: CodeT5, a unified pretrained encoder-decoder Transformer model that better leverages code
semantics conveyed by identifiers assigned from developers.

(6) UniXcoder-base [17]: This is a unified code representation model that leverages a Transformer-based
architecture. UniXcoder extends the capabilities of models like CodeBERT by incorporating a comprehensive
understanding of code syntax and semantics, thereby enhancing the model’s performance in coding tasks such as
code summarization, translation, and completion.

(7) UniXcoder-base-nine: Continue pre-training uniXcoder-base on NL-PL pairs of CodeSearchNet dataset and
additional 1.5M NL-PL pairs of C, C++ and C# programming language. The model can support nine languages:
java, ruby, python, php, javascript, go, ¢, c++ and c#.

(8) TRACED [11]: TRACED employs an execution-aware pre-training strategy to enhance fine-tuned models’
understanding of dynamic code properties, significantly improving their performance in execution path prediction,
runtime variable value prediction, clone retrieval, and vulnerability detection.

5 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate our model’s superiority and analyze the reasons
for its effectiveness. Specifically, we aim to answer the following research questions:

RQ1: How effective is M2CVD compared with the state-of-the art baselines on vulnerability detection?

In this RQ, the performance of M2CVD is verified with two real-world vulnerability datasets. Given a code
fragment to be detected, M2CVD generates a vulnerability description through a large model, and generates code
and vulnerability assessment pairs through collaborative process changes. The performance of M2CVD on the
test data is evaluated and compared to the SOTA baseline on two datasets.

RQ2: What are the effects of vulnerability description refinement for M2CVD?

In this RQ, we verified the effectiveness of the components, which included the comparison between the results
of fine-tuning after generating the vulnerability description directly through the large model and the results of
fine-tuning after refining the vulnerability description in step 2.

RQ3: What are the effects of hints of fine-tuned models for LLMs?

In this RQ, we verify whether the first judgment results of the fine-tuned model have a positive effect on the
LLM. We inform the LLM fine-tuned model or error judgment information respectively to verify the rationality
of the M2CVD process.

RQ4: How well does M2CVD generalize across different fine-tuned models and LLMs?

In this RQ, we validate the performance between different fine-tuned models and LLMs combinations on the
vulnerability detection task, validating the generality of the M2CVD approach.

ACM Trans. Softw. Eng. Methodol.

12« Ziliang Wang,Ge Li et al.

Table 2. Comparison results of different models on Devign and Reveal datasets. The best result for each metric is highlighted
in bold.

Dataset Devign [52] Reveal [4]

Models Acc Recall Prec F1 F1 Recall Prec Acc

ChatGPT 3.5 COT 44.73 89.64 42.73 59.84 20.22 89.91 11.39 28.85
ChatGPT 40 COT 52.82 43.61 9.24 15.25 18.21 99.12 10.03 10.73
Devign 56.89 52.50 64.67 57.59 33.91 31.55 36.65 87.49
ReGVD 61.89 48.20 60.74 53.75 23.65 14.47 64.70 90.63
CodeBERT 63.59 41.99 66.37 51.43 35.11 25.87 54.62 90.41
UniXcoder-base 65.77 51.55 66.42 58.05 39.47 26.31 78.94 91.90
CodeT5-base 65.04 54.26 64.12 58.78 40.56 38.16 43.28 88.79
UniXcoder-nine 66.98 56.33 66.63 61.05 42.19 33.77 56.20 90.72
TRACED 64.42 61.27 60.03 61.05 32.66 21.49 68.05 91.11
M2CVD 69.25 61.51 68.38 64.77 52.54 45.18 62.42 91.78

*The Reveal dataset is an imbalanced dataset. F1 and recall are the primary metrics.

Number of vulnerabilities detected by different models Number of vulnerabilities detected by different models

= M2CVD . [M2CVD
TRACED Venn Diagram of False Negatives gy
UniXcoder = M2CVD UniXcoder = M2CVD
1 TRACED [TRACED
a UniXcoder UniXcoder

Venn Diagram of False Negatives

23

(a) Devign: Correct Predic- (c) Reveal: Correct Predic-
tions (b) Devign: False Negatives tions (d) Reveal: False Negatives

Fig. 4. Comparison of M2CVD, TRACED, and UniXcoder on Devign and Reveal datasets. (a)(b) show the number of correct
predictions and false negatives on Devign; (c)(d) show the corresponding results on Reveal.

RQ5: What is the impact of the different judgment results between the detection model and the LLM prediction?

5.1 RQI. Effectiveness of M2CVD

To answer the first question, we compare M2CVD with the seven baseline methods on the two datasets as shown
in table 2. We can draw conclusions about the performance of M2CVD compared to the baselines across the
evaluated datasets.

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection « 13

Table 2 presents the performance of ChatGPT on the vulnerability detection task. It is evident that large-scale
language models employ aggressive detection logic. Specifically, in ChatGPT 4o, nearly all code snippets were
identified as vulnerable, leading to considerably low F1 scores across both datasets.

M2CVD demonstrates a marked superiority in terms of Accuracy on both datasets. In the Devign dataset,
M2CVD attains the highest Accuracy of 69.25%, the highest F1 score of 64.77% and the highest Precision outper-
forming all other models. This indicates that M2CVD has the most balanced performance in correctly identifying
vulnerabilities without being skewed towards over-predicting (which would increase recall but decrease precision)
or under-predicting (which would do the opposite).

On the Reveal dataset, since the proportion of negative samples in this dataset is 90, the model with strong
fitting performance generally exceeds 90% on ACC. In this dataset, people are generally interested in the ability
of the model to find positive samples (vulnerability). For M2CVD, Both Recall and F1 metrics maintain the level
of optimal level. These figures not only show that M2CVD maintains its high performance in different testing
conditions but also that it consistently understands and predicts code vulnerabilities with high precision and
recall. The performance improvement of M2CVD on the reveal dataset is much less than that of Devign, which
we believe is caused by the imbalance of the Reveal dataset, and the vulnerability data is far less/than the normal
data. This allows ChatGPT to add far less vulnerability semantics to this dataset than to the Devign dataset.

Fig. 4 presents a comparison of three models (M2CVD, TRACED, and UniXcoder-base) through Venn diagrams,
highlighting their performance in detecting vulnerabilities and false negatives. In Fig. 4(a), the Venn diagram
illustrates the overlap in vulnerabilities correctly detected by the three models: M2CVD independently detects
66 vulnerabilities, outperforming TRACED, which detects 32, and UniXcoder-base, which detects 56. The three
models collectively identify 848 vulnerabilities, indicating a significant overlap and suggesting that they are
effective in detecting similar vulnerabilities. Figure 4(b) depicts the distribution of false negatives among the three
models: M2CVD independently produces 18 false negatives, which is significantly lower than the 142 produced
by TRACED and 72 by UniXcoder-base. The three models collectively produce 217 false negatives, indicating
some common challenges in detecting certain vulnerabilities. In conclusion, the analysis of Fig. 4 demonstrates
that the M2CVD model not only excels in detecting a higher number of actual vulnerabilities but also has a lower
false negative rate compared to TRACED and UniXcoder. This indicates that the M2CVD model offers superior
overall performance in vulnerability detection tasks; making it a valuable tool for applications requiring high
accuracy and low false negative rates. Fig. 4 shows the situation in the Reveal dataset. As shown in Fig. 4(c),
M2CVD finds more vulnerabilities.

In order to better compare the performance of M2CVD, we adopt the UniXcoder-base as the base model, which
has the same number of parameters asbaseline models such as TRACED and CodeBERT. After the multi-model
collaboration process, M2CVD demonstrates superior accuracy and precision over UniXcoder-base, with marked
improvements seen in both the Devign and Reveal datasets. Overall, the performance of M2CVD shows that
M2CVD has a more balanced and higher performance in overall performance compared to UniXcoder.

Answer to RQ1: The performance of M2CVD shows that compared with a single model, M2CVD effectively
achieves higher performance in code defect detection tasks under different experimental conditions through a
collaborative mechanism.

5.2 RQ2: Effects of vulnerability description refinement for detection performance

In this section, we elaborate on the implications of Phase II feedback within the M2CVD framework on the
performance of code vulnerability detection.

For this purpose, a comparative experiment was established using the Devign dataset with its default partition-
ing. The configurations employed in the experiment are as follows:

a) CodeBERT: Utilizes the optimal configuration as reported in existing literature.

ACM Trans. Softw. Eng. Methodol.

14 + Ziliang Wang,Ge Li et al.

Table 3. Model Accuracy Comparison with different M2CVD configuration

Model Accuracy
CodeBERT 63.59%
M2CVD(GPT 3.5+CodeBERT) w/o PII 65.50%
M2CVD(GPT 3.5+CodeBERT) 67.50%
UniXcoder-base 64.82%
M2CVD(GPT 3.5+UniXcoder-base) w/o PII 67.05%
M2CVD(GPT 3.5+UniXcoder-base) 69.25%
M2CVD(GPT 40+UniXcoder-nine) w/o PII 64.45%
M2CVD(GPT 40+UniXcoder-nine) 68.99%

b) UniXcoder-base: Also adopts the optimal configuration as documented in existing literature.

¢) M2CVD(CodeBERT) w/o PII: This configuration bypasses thee M2CVD comparison process, meaning that
the LLMs conduct a once assessment without incorporating feedback from the fine-tuned model’s assessments.
The description rendered by LLMs is amalgamated with the code, and predictions are made using the CodeBERT
model.

d) M2CVD(UniXcoder-base) w/o PII: It omits the M2CVD comparison process. The LLM’ first vulnerability
detection, when combined with the code, employs the UniXcoder-base model for prediction.

e) M2CVD(CodeBERT) : Use the standard M2CVD process where ChatGPT as the LLMs and CodeBERT as
the fine-tuned model.

f) M2CVD(UniXcoder-base): Also use the standard M2CVD process, with ChatGPT as the LLMs and
UniXcoder-base as the fine-tuned model.

g) M2CVD(GPT 4o + UniXcoder-nine): M2CVD experiments were performed on the latest ChatGPT 40 and
fine-tuned model UniXcoder-nine.

The results from the experiment as shown in the Table 3, which presents a comparison results of model
accuracy under different M2CVD configurations. As shown in Fig.5, the experimental result evidence suggests a
improvement in model accuracy when integrating Phase II feedback into the M2CVD framework. Notably, the
M2CVD (CodeBERT) w/o PII outperforms the CodeBERT model by a margin of 1.91%. Similarly, the M2CVD
(UniXcoder-base) w/o PII configuration outperforms the UniXcoder by a margin of 2.23%. The enhancements are
more pronounced when the comparison includes Phase II, as observed with the M2CVD (CodeBERT) configuration,
which incorporates Phase II feedback, outperforms the CodeBERT model by a margin of 2.51%. And the M2CVD
(UniXcoder-base) configuration with Phase II integration surpasses its UniXcoder-base counterpart by 3.29%.

The UniXcoder-nine model is obtained by continuing training on code-natural language pairs based on
UniXcoder-base. ChatGPT 4o provides an overly aggressive description of vulnerabilities without the refinement
process, and considers almost all of the code to be vulnerable. This leads to the phenomenon that the model
overfits on the training set and the vulnerability detection performance decreases.

The results confirm the proposed concept. By integrating vulnerability semantics into code data, we enhance
the prediction accuracy of the fine-tuned model in vulnerability detection tasks. Concurrently, these results
highlight the efficacy of the vulnerability semantic refinement process within the M2CVD framework. This

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection « 15

Table 4. LLMs Accuracy Comparison with different configurations in Phase Il

Model Accuracy
ChatGPT 3.5 COT 45.29%
ChatGPT 3.5 3-fewshot 45.30%
ChatGPT 40 COT 53.73%
CodeLLaMa-13B 49.57%
UniXcoder-base for CodeLLaMa-13B 52.59%
ALL“YES” for ChatGPT 3.5 50.04%
ALL “NO” for ChatGPT 3.5 52.12%
UniXcoder-base for ChatGPT 40 56.73%
UniXcoder-base for ChatGPT 3.5 57.61%

process significantly boosts the fine-tuned model’s predictive capabilities during the final execution of the code
judgment task.

Answer to RQ2: Experiments show that the vulnerability description refinement process of M2CVD can
effectively improve the performance of code vulnerability detection.

5.3 RQa3. Effects of hints of fine-tuned models for LLMs

In this section, we elaborate on the implications of Phase II feedback within the M2CVD framework on the
performance of the ChatGPT model.

The aim is to determine whether informing ChatGPT of the results of the fine-tuned model, after the initial
assessment in M2CVD, benefits ChatGPT’s performance for code vulnerability detection. For this purpose, we set
up a comparative experiment based on the Devign dataset.

The configurations employed in the experiment are as follows:

a) ChatGPT: Get:ChatGPT’s vulnerability assessment interactively.

b) ChatGPT-fewshow: Get ChatGPT’s vulnerability assessment interactively. Two labeled defective code
segments and one labeled non-defective code segment are selected as examples using a random selection method.

¢) ALL“YES” for ChatGPT: During refinement, we informed ChatGPT of the fine-tuned model evaluations,
but all of them were “YES.” This meant that we were mistakenly telling ChatGPT that every fragment of code
was vulnerable:

d) ALL “NO” for ChatGPT: During refinement, we informed ChatGPT of the evaluation of fine-tuned models,
but all fine-tuned models judged “NO”. This means that we are wrongly telling ChatGPT that every fragment of
code is free of bugs.

e) UniXcoder for CodeLLaMa: Using the standard M2CVD process, the LLMs was chosen as CodeLLaMa.

f) UniXcoder for ChatGPT: Using the standard M2CVD process, the LLMs was chosen as ChatGPT.
where CodeLLaMa-13B is a large language models based on Llama 2. It provides excellent performance among
open-source LLMs with long input contexts [38].

ACM Trans. Softw. Eng. Methodol.

16 « Ziliang Wang,Ge Li et al.

Based on the experimental data provided in Table 4, we can conclude that refinement step of the M2CVD
framework plays a significant role in enhancing the performance of LLMs in detecting code vulnerabilities.
The experiments reveal several insights: The experimental data in Table 4 underscores the impact of the initial
feedback given to ChatGPT during Phase II of the M2CVD process. Firstly, ChatGPT-fewshot has almost no
improvement over ChatGPT. This is due to the many types and complex forms of code defects, and a small number
of instances cannot provide effective reference for large models. When ChatGPT is informed that an expert has
judged a piece of code as vulnerable ("YES”), its accuracy in detecting code vulnerabilities increases from 45.29%
to 50.04%. This suggests that ChatGPT benefits from additional context. Even by prompting him with insufficient
information to check the data again, the detection accuracy can be improved. Similarly, if ChatGPT is consistently
informed that an expert has judged the code as not vulnerable ("NO”), the model’s accuracy further improves to
52.12%. When the evaluation results of the UniXcoder model fine-tuned on the dataset are provided for ChatGPT,
the accuracy of vulnerability detection rises to 57.61%. This suggests that the UniXcoder model encapsulates the
dataset’s inherent logic effectively and can guide the LLM (ChatGPT) towards more accurate evaluations. On the
CodeLLaMa model, we observe the same phenomenon, increasing the accuracy from 49% to 52%.

The accuracy of the basic ChatGPT model is 45.29%, while after the refinement process of M2CVD, ChatGPT
shows significant performance improvement. This suggests that from a specialized fine-tuned model, which
carries insights from its fine-tuning process, is crucial in helping LLMs better understand and evaluate the code
in question.

Answer to RQ3: The strategy of informing LLMs with the insights from fine-tuned models that are attuned to
the specific dataset logic not only improves the performance but also highlights the potential of collaborative
learning systems in code vulnerability detection. This process effectively enhances the accuracy of LLMs in the
code vulnerability detection task within the framework of M2CVD, and also enhances the accuracy of LLMs in
adding vulnerability semantics.

5.4 RQ4. Effects of different fine-tuned models and LLMs working together

In this section, we elaborate on the impact of different fine-tuned models and LLMs on the performance of
validation vulnerability prediction. The aim is to judge the impact of the choice of fine-tuned model and LLMs
during M2CVD on the final performance. To this end, we set up comparative experiments using the Devign
dataset and its default partition.

The configurations employed in the experiment are as follows: Fine-tuned models: CodeBERT, UniXcoder,
Qwen2.5-0.5B [1],Pertbert [30] LLM:CodeLLaMa-13B [31],DeepSeek V2.5 [10],ChatGPT-3.5.

The result from the experiment presented in Table 5 provides experimental result about the impact of combining
different fine-tuned models and LLMs within the M2CVD framework for predicting code vulnerabilities. The
standalone models, CodeBERT and UniXcoder, establish a baseline with accuracy of 63.59% and 64.82%, respectively.
The combination of CodeBERT with CodeLLaMa-13B results in a slight accuracy increase, reaching 64.38%. When
UniXcoder is paired with CodeLLaMa-13B, there is a more noticeable improvement, with the accuracy climbing to
64.93%. These figures serve as a benchmark to assess the added value of integrating LLMs with fine-tuned models.
More substantial gains in accuracy are observed when ChatGPT is introduced to the mix. ChatGPT paired with
CodeBERT yields an accuracy of 66.10%, while its combination with UniXcoder tops the table at 68.11%.

Additionally, other LLMs such as DeepSeek V2.5 also show notable contributions. For instance, DeepSeek
paired with PertBERT achieves 66.65%, while its combination with Qwen2-coder results in 67.38%. These results
demonstrate that DeepSeek is an effective LLM for augmenting the capabilities of various fine-tuned models.
However, while DeepSeek provides competitive performance, it does not surpass the accuracy achieved by
ChatGPT-3.5.

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection « 17

Table 5. Model Accuracy Comparison with different fine-tuned models and LLMs working together

Model Parameters Accuracy
CodeBERT 125M 63.59%
CodeLLaMa-13B+CodeBERT 13B+125M 64.38%
ChatGPT 3.5+CodeBERT -+125M 66.10%
Pertbert-base 125M 63.90%
ChatGPT 3.5+Pertbert -+125M 66.36%
DeepSeek+Pertbert 236B+125M 66.65%
Qwen2.5-coder 0.5B 64.27%
DeepSeek+Qwen2.5-coder 236B+0.5B 67.38%
ChatGPT 3.5+Qwen2.5-coder -+0.5B 68.11%
UniXcoder-base 223M 64.82%
CodeLLaMa-13B+UniXcoder-base 13B+223M 64.93%
DeepSeek+UniXcoder-base 1236B+223M 67.53%
ChatGPT 3.5+UniXcoder-base -+223M 68.66%

This indicates that the ChatGPT model significantly enhances the performance of both fine-tuned models, with
the ChatGPT+UniXcoder configuration proving to be the most effective partnership in this experiment.

Answer to RQ4: The synergy between LLMs and fine-tuned models in the M2CVD framework significantly
enhances the precision of detecting code vulnerabilities. Specifically, the more superior performing LLMs and
fine-tuned models contributes to a more pronounced accuracy improvement in the M2CVD synergy mechanism.

5.5 RQ5. What are the implications of LLM and detection models having different vulnerability
judgments

LLM

v x

v 51.21% 14.71%
Detection Model

x 13.21% 20.86%

Table 6. Model Prediction Results

ACM Trans. Softw. Eng. Methodol.

18 « Ziliang Wang,Ge Li et al.

Detection Model LLM Validation Mode
v x

v v 91.49% 8.51%

v x 77.36% 22.64%

x Vv 50.69% 49.31%

x x 17.89% 82.11%

Table 7. Validation Results for Detection Model and LLM

In this section, we analyze the various situations in which LLM and test model evaluation results occur during
phase 1. This analysis is based on the performance of UniXcoder-base and ChatGPT-3.5 on the Devign dataset,
where the LLM was further enhanced using the M2CVD method for secondarywvalidation. As shown in Table 6,
51.21% of the samples were correctly classified by the two models, which represented the most easily detected
samples. About 29 percent of the samples could only be detected by one model. Therefore, a total of 27.92% of
the samples exhibit inconsistent predictions between the detection model and the LLM. Table 6 illustrates that
20.86% of the samples were completely misclassified by both detection model and LLM. These cases represent the
most challenging scenarios for our detection task. To further improve the yulnerability detection accuracy of this
part of the sample, the validation model was used for the second round. of learning, combining the prediction and
description information generated from the two models. Table 7 demonstrates the results of this second stage,
revealing that the validation model was able to achieve significant improvements even in these difficult cases.

The validation model achieved notable improvements in most cases, particularly for samples that were initially
misclassified by one or both models. In the category where both the detection model and the LLM correctly
identified vulnerabilities, the accuracy of the validation model decreased by approximately 8%. The 8.51% drop is
mainly due to two factors: first, slight classification divergences arise because the validation and detection models
are trained on different inputs under distinct hyperparameter settings; second, a few LLM explanations employ
overly severe descriptions(e.g., ’this function may cause a major memory leak’), which mislead the validation
model into incorrect judgments. Despite this slight trade-off, the overall benefits of incorporating descriptive
features are evident, as the validation model significantly enhanced detection in other categories.

In cases where the detection model failed but the LLM succeeded, the validation model leveraged the LLM’s
ability to capture Vulnerability descriptions, achieving an accuracy of 74.88%.

Similarly, for samples where both models failed to detect vulnerabilities, the validation model still achieved a
substantial improvement, correctly classifying 17.89% of these cases. We further statistical the data on the sample
with vulnerabilities and verify that the model has 22.11% accuracy in this category. This means that the validation
model found these previously unidentified vulnerabilities.

Answer to RQ5: This shows that by integrating vulnerability description, validation models can identify
previously undetected patterns, even in the most challenging scenarios.

6 ABLATION EXPERIMENT

In the current research, we explore various approaches to enhancing vulnerability semantics to validate the
effectiveness of vulnerability semantics generation in the M2CVD framework. We adopt three of the latest
methods for this evaluation:

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection « 19

a) Mask: Steenhoek et al. fine-tune the UniXcoder model by adding specific tags before and after potentially
vulnerable code through rule-based matching [42].

b) Prepend: Steenhoek et al. also propose copying the matched vulnerable code to the beginning of the snippet
to emphasize its context [42].

¢) Key Information Extraction (SEU): Min et al. introduce an approach that leverages LLMs to extract key
textual information related to events and incorporates it into the fine-tuning process [33].

The performance of these methods, alongside the M2CVD framework, is evaluated on the Devign dataset, as
shown in Table 8.

Table 8. Performance of different methods on the Devign dataset

Method Acc Recall Prec F1

Mask 65.84 51.23 66.70 57.95
Prepend 65.55 60.95 62.54 61.89
SEU 68.04 56.65 68.36 61.96
M2CVD 69.25 61.51 68.38 64.77

From Table 8, it is evident that while Mask and Pred methods enhance the model’s focus on potentially
vulnerable code by tagging or emphasizing specific parts, they fall short in addressing the complexity and diversity
of real-world vulnerability structures. Similarly, SEU, though effective in extracting key vulnerability-related
features through LLMs, lacks a secondary validation process, limiting its ability to refine and validate nuanced
vulnerability semantics. In contrast, M2CVD leverages a collaborative refinement process, where the secondary
validation in Phase Il iteratively enhances the accuracy and relevance of LLM-generated vulnerability descriptions.
This approach not only improves the integration of refined vulnerability descriptions into the fine-tuning process
but also significantly boosts the model’s detection performance, achieving the highest F1 score of 64.77%. These
results highlight the importance of iterative refinement and multi-model collaboration in overcoming challenges
posed by code complexity and semantic diversity, enabling more accurate and comprehensive vulnerability
detection.

7 CASE STUDY

In this section, we show instances of LLMs generate code vulnerability semantics. This is the core idea of the
M2CVD method: Fig. 5 presents a fragment of vulnerable code from the Devign dataset. This function spans over
100 lines, yet the vulnerability is concealed within just a few of them. Traditional vulnerability detection models
dissect this code into tokens to learn the vulnerability features. However, these features tend to be obfuscated by
a large number of no-vulnerability codes, making the learning process challenging.

Fig. 6 provides a natural language description of the vulnerability present in this code by LLMs. This model
condenses the risky elements of the code into a succinct natural language summary. This approach offers
two significant advantages. Firstly, the simplification of features substantially eases the fine-tuned model’s
learning process, focusing on specific keywords related to the vulnerabilities. Secondly, it provides a more
consistent representation of vulnerabilities. Similar vulnerabilities are expressed diversely across different code
segments, leading to a vast feature space for vulnerability characteristics. Language models alleviate this issue
by standardizing the same vulnerabilities into a unified natural language description, thereby streamlining the
learning and identification process.

ACM Trans. Softw. Eng. Methodol.

20 .« Ziliang Wang,Ge Li et al.

static (*s, *pkt) {
‘ * = ey ;
*oc = NULL;
*st = s-> [pkt-> 15
= -> * -> 2
=1
> =1;
= 0;
it (-> I - -> > -> && -> >0) {
// Possible integer overflow due to multiplication without checks
= = * e * ;
= (hls-> - ->) * ->time * H
-> = ->time * TI 3
ts = + ; // Possible overflow
)
if (st-> -> ==) {
= -2 ;
= O;
} else {
= - H
= -> ;
¥ Over 100 lines

Fig. 5. A fragment from the Devign dataset with a code vulnerability. The vulnerability isin a few lines in this very long code.

dup(hls->avf=>fileflame); 4 ther@”is a potential memo
leak if ‘av_strdup® fails to al emory. The alldfated memoiygdiould be freed if ‘av_strdup®
eturns NULL.
2. The line “av_write_frame(oc, NULL);' is used to fUWllsh any Buffered data. However, t

for errors after calling this function. &F thereQis,anberror durin shing, the error is not

ine ‘hls_rename_temp_file(s, oc);%, the ‘hls_rename_temp_file' function is c

ng for errors. If thareWids, an errom,cefaming tt y file, it is not
buffer overflow talthe 1the " if (hls rmat->priv_class h -
Ild be a eckiito&nsure, that ° * 1s not NULL before

> nber--;° decrements the "number’ variable without checking if it is already 0.
This may result in anginteger underflow.

6. Th is a tiaWMfiemory leak in the line °
ts befc is lupe. \n\nOverall, the

It should have chegk®»for Epgorspafter calli
in case of failuyges.

Fig. 6. ChatGPT’s abstract representation of the vulnerability in this code fragment(fig.2).

8 DISCUSSION

In this section, we discuss the design of prompt in M2CVD, the reason for version selection of ChatGPT model.

Design of prompt. In the collaborative process of the M2CVD method, two sentences of intuition-based
prompt are used to complete the interaction with ChatGPT. In the prompt used by M2CVD, we followed the
experience provided in existing research, setting roles for LLMs and providing task contexts. Existing literature
acknowledges the impact that varying prompts can have on the outcomes yielded by LLMs, with techniques
such as Chain-of-Thought [45]. However, the focus of this study is mainly to explore the feasibility of multi-
model collaboration rather than optimization techniques of prompt, which is a concern more related to the
field of prompt engineering. Although the prompts employed within M2CVD may not represent the zenith of

ACM Trans. Softw. Eng. Methodol.

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection « 21

optimization, their application has resulted in a significant enhancement of performance in the code vulnerability
detection tasks, underscoring the efficacy of the multi-model collaborative approach.

ChatGPT 40 Count ChatGPT 3.5-turbo Count

Memory Management 21 Buffer Overflow 5
Issues

Input Validation Issues 18 Memory Leaks 5

Boundary and Overflow 16 Improper Error Handling 5
Issues

Error Handling Issues 10 Integer Overflow 5

Concurrency and 4 Null Pointer Dereference 3

Synchronization Issues

Table 9. Top 5 Vulnerability Types from ChatGPT 3.5 and ChatGPT 40

Version of ChatGPT. In the latest release, ChatGPT 4o offers enhanced generation and understanding
capabilities compared to ChatGPT 3.5. However, the relatively high usage fees associated with ChatGPT 40 make
it impractical for generating vulnerability semantics for tens of thousands of code fragments. On the other hand,
ChatGPT 3.5 has more lenient access policies and pricing, making it-a more feasible option for large-scale tasks.

We performed M2CVD on the Devign dataset with different ChatGPT and UniXcoder-base. We conducted
experiments using M2CVD on the Devign dataset, comparing different versions of ChatGPT and UniXcoder-base.
The cost of using ChatGPT 4o for defect detection on the full dataset amounted to approximately $1200. Despite
the higher cost, the experimental results indicated that the vulnerability descriptions generated by ChatGPT 4o
were not significantly better than those generated by ChatGPT 3.5. Consequently, ChatGPT 3.5 was selected as
the default LLM version for M2CVD.

Our sampling analysis on the Devign dataset revealed that ChatGPT 4o reported 98% of its code as vulnerable
due to its overly strict vulnerability definition, resulting in an F1 score of only 8.16%. After applying the M2CVD
process, the F1 score improved to 19.23%. Table 9 summarizes the vulnerability reporting by GPT 4o. The high
false positive rate of the GPT 4o.model can be attributed to several factors. The detector lacks global context
information when analyzing code snippets, relying solely on the snippet itself for judgment. This limitation can
lead to false positives, such as failing to'recognize pre-initialized variables or pre-performed bounds checks in the
calling function. The detector’s strict criteria flag even minor potential issues as vulnerabilities, like uninitialized
variables or unchecked pointers, even when they are safe within the specific context. The detector is highly
sensitive to boundary checking and input validation, resulting in numerous unnecessary warnings even in
scenarios where out-of-bounds access is impossible. By assuming the worst-case scenario, the detector enhances
code robustness in some instances but often imposes excessive error-handling logic that is not required in most
real-world applications. ChatGPT3.5’s vulnerability determination logic is not that aggressive. GPT 3.5 gives 70
defect judgments and 30 non-defect judgments for 100 sampled data. The accuracy is 53% and the F1 is 38.96%.
After the process of M2CVD, ACC is increased to 55%, and F1 is greatly increased to 50.55%. GPT 3.5 gives
56 vulnerability judgments, which tend to follow the distribution of this data set. Considering the sampling
experiment results, ChatGPT 3.5 is used as the default LLM in this method.

9 CONCLUSION

In this paper, we introduce M2CVD, a novel method designed to address the challenge of software vulnerability
detection by harnessing the combined strengths of pre-trained fine-tuned models and large language models.

ACM Trans. Softw. Eng. Methodol.

22 .« Ziliang Wang,Ge Li et al.

The M2CVD integrates the language models such as ChatGPT and fine-tuned models like UniXcoder, to create a
collaboration process capable of detecting vulnerabilities with high accuracy. Empirical evaluations conducted
on the REVEAL and Devign datasets have demonstrated the effectiveness of M2CVD, showcasing its superior
performance in detecting code vulnerabilities compared to existing benchmarks. The results of this research
not only confirm the viability of M2CVD as a high-fidelity detection system but also underscore the potential
of model synergy in enhancing the capabilities of automated vulnerability detection mechanisms. In essence,
M2CVD demonstrates the potential to exploit the ability of different models to work together, providing a new
idea for future research in automated software vulnerability detection and a scalable and effective solution for
protecting software systems from changing threats.

ACKNOWLEDGMENTS

This work is sponsored by the National Key Research and Development Program of China under Grant No.
2022YFB4501902.

REFERENCES

[1] 2024. Qwen2 Technical Report. (2024).

[2] Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang, Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-BERT: Improving Pre-trained
Transformers with Syntax Trees. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume. 3011-3020.

[3] Sicong Cao, Xiaobing Sun, Lili Bo, Rongxin Wu, Bin Li, and Chuangqi Tao. 2022. MVD: memory-related vulnerability detection based on
flow-sensitive graph neural networks. In Proceedings of the 44th International Conference on Software Engineering. 1456—~1468.

[4] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. 2021. Deep learning based vulnerability detection: Are we
there yet. IEEE Transactions on Software Engineering (2021).

[5] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling
technique. Journal of artificial intelligence research 16 (2002), 321-357.

[6] Checkmarx. 2022. Online. Available: https://www.checkmarx.com/ (2022).

[7] Xiao Cheng, Haoyu Wang, Jiayi Hua, Guoai Xu, and Yulei Sui. 2021. Deepwukong: Statically detecting software vulnerabilities using
deep graph neural network. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021), 1-33.

[8] Xiao Cheng, Guangin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-sensitive code embedding via contrastive learning for software
vulnerability detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. 519-531.

[9] Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, and Aditya Ghose. 2017. Automatic feature learning for
vulnerability prediction. arXiv preprint arXiv:1708.02368 (2017).

[10] DeepSeek-Al 2024. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model. arXiv:2405.04434 [cs.CL]

[11] Yangruibo Ding, Benjamin Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. [n. d.]. Traced: Execution-aware pre-training
for source code. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering ICSE 2024. 1-12.

[12] Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun Wu. 2019. VulSniper: Focus Your Attention to
Shoot Fine-Grained Vulnerabilities.. In [JCAL 4665-4671.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al.
2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In Findings of the Association for Computational
Linguistics: EMNLP 2020. 1536—1547.

[14] Flawfinder. 2022. Online. Available: http://www.dwheeler.com/ flawfinde/r (2022).

[15] Michael Fu and Chakkrit Tantithamthavorn. 2022. Linevul: A transformer-based line-level vulnerability prediction. In Proceedings of the
19th International Conference on Mining Software Repositories. 608—620.

[16] Michael Fu; Chakkrit Tantithamthavorn, Van Nguyen, and Trung Le. 2023. ChatGPT for Vulnerability Detection, Classification, and
Repair: How Far Are We? arXiv preprint arXiv:2310.09810 (2023).

[17] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022. UniXcoder: Unified Cross-Modal Pre-training for Code
Representation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
7212-7225.

[18] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al.
2020. GraphCodeBERT: Pre-training Code Representations with Data Flow. In International Conference on Learning Representations.

[19] David Hin, Andrey Kan, Huaming Chen, and M Ali Babar. 2022. LineVD: Statement-level vulnerability detection using graph neural
networks. In Proceedings of the 19th International Conference on Mining Software Repositories. 596—-607.

ACM Trans. Softw. Eng. Methodol.

https://arxiv.org/abs/2405.04434

[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
(30]

(31]
(32]

(33]

(34]

[40]
[41]
[42]

[43]

[44]

(45]

M2CVD: Enhancing Vulnerability Understanding through Multi-Model Collaboration for Code Vulnerability Detection « 23

Julian Jang-Jaccard and Surya Nepal. 2014. A survey of emerging threats in cybersecurity. Journal of computer and system sciences 80, 5
(2014), 973-993.

Arnold Johnson, Kelley Dempsey, Ron Ross, Sarbari Gupta, Dennis Bailey, et al. 2011. Guide for security-focused configuration
management of information systems. NIST special publication 800, 128 (2011), 16-16.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and evaluating contextual embedding of source
code. In International conference on machine learning. PMLR, 5110-5121.

Marie-Anne Lachaux, Baptiste Roziere, Marc Szafraniec, and Guillaume Lample. 2021. DOBF: A deobfuscation pre-training objective for
programming languages. Advances in Neural Information Processing Systems 34 (2021), 14967-14979.

Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Vulnerability detection with fine-grained interpretations. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 292-303.
Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. 2016. Gated Graph Sequence Neural Networks. In Proceedings of
ICLR’16.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021. Sysevr: A framework for using deep learning to
detect software vulnerabilities. IEEE Transactions on Dependable and Secure Computing 19, 4 (2021), 2244-2258.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep
learning-based system for vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, and Yang Xiang. 2017. POSTER: Vulnerability discovery with function representation learning
from unlabeled projects. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security. 2539-2541.
Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane Cleland-Huang. 2021. Traceability transformed: Generating more accurate
links with pre-trained bert models. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 324-335.
Zhongxin Liu, Zhijie Tang, Junwei Zhang, Xin Xia, and Xiaohu Yang. 2024. Pre-training by Predicting Program Dependencies for
Vulnerability Analysis Tasks. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1-13.

Llama. 2022. Online. Available: https://ai.meta.com/llama/ (2022).

Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray. 2019. Metric learning for adversarial robustness.
Advances in neural information processing systems 32 (2019).

Qingkai Min, Qipeng Guo, Xiangkun Hu, Songfang Huang, Zheng Zhang, and Yue Zhang. 2024. Synergetic Event Understanding: A
Collaborative Approach to Cross-Document Event Coreference Resolution with Large Language Models. (2024).

Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh Phung. 2022. ReGVD: Revisiting graph neural
networks for vulnerability detection. In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings. 178-182.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, Liguo Huang, and Bin Luo. 2022. Spt-code: Sequence-to-sequence pre-training for
learning source code representations. In Proceedings of the 44th International Conference on Software Engineering. 2006—-2018.

openAl 2022. Online. Available: https://www.chat.openai.com/ (2022).

Rishi Rabheru, Hazim Hanif, and Sergio Maffeis. 2021. DeepTective: Detection of PHP vulnerabilities using hybrid graph neural networks.
In Proceedings of the 36th annual ACM symposium on applied computing. 1687-1690.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy
Rapin, et al. 2023. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

Rebecca Russell, Louis Kim; Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir, Paul Ellingwood, and Marc McConley. 2018.
Automated vulnerability detection in source code using deep representation learning. In 2018 17th IEEE international conference on
machine learning and applications (ICMLA). IEEE, 757-762.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural networks. IEEE transactions on Signal Processing 45, 11 (1997),
2673-2681.

Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. 2023. An empirical study of deep learning models for vulnerability
detection. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2237-2248.

Benjamin Steenhoek, Md Mahbubur Rahman, Shaila Sharmin, and Wei Le. 2023. Do Language Models Learn Semantics of Code? A Case
Study in Vulnerability Detection. arXiv preprint arXiv:2311.04109 (2023).

Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef Pieprzyk, and Surya Nepal. 2022. Transformer-based
language models for software vulnerability detection. In Proceedings of the 38th Annual Computer Security Applications Conference.
481-496.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
for Code Understanding and Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
8696-8708.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought
prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems 35 (2022), 24824-24837.

ACM Trans. Softw. Eng. Methodol.

24 .« Ziliang Wang,Ge Li et al.

[46] Xin-Cheng Wen, Yupan Chen, Cuiyun Gao, Hongyu Zhang, Jie M Zhang, and Qing Liao. 2023. Vulnerability Detection with Graph
Simplification and Enhanced Graph Representation Learning. arXiv preprint arXiv:2302.04675 (2023).

[47] Yueming Wu, Deqing Zou, Shihan Dou, Wei Yang, Duo Xu, and Hai Jin. 2022. VulCNN: An image-inspired scalable vulnerability
detection system. In Proceedings of the 44th International Conference on Software Engineering. 2365-2376.

[48] Fabian Yamaguchi. 2015. Pattern-Based Vulnerability Discovery. Ph.D. Dissertation. University of Gottingen.

[49] Fabian Yamaguchi. 2017. Pattern-based methods for vulnerability discovery. it-Information Technology 59, 2 (2017), 101-106.

[50] Junwei Zhang, Zhongxin Liu, Xing Hu, Xin Xia, and Shanping Li. 2023. Vulnerability Detection by Learning from Syntax-Based
Execution Paths of Code. IEEE Transactions on Software Engineering (2023).

[51] Weining Zheng, Yuan Jiang, and Xiaohong Su. 2021. VulSPG: Vulnerability detection based on slice property graph representation
learning. In 2021 IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE). IEEE, 457-467.

[52] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. Advances in neural information processing systems 32 (2019).

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Related work
	2.1 Traditional Vulnerability Detection
	2.2 Deep Neural Network for Vulnerability Detection
	2.3 Pre-Trained Models for Vulnerability Detection

	3 Approach
	3.1 Initial Vulnerability Detection
	3.2 Vulnerability Description Refinement
	3.3 Integrated Vulnerability Detection
	3.4 Inference Phase
	3.5 Implementation Details

	4 Experiments
	4.1 Datesets
	4.2 Performance Metrics
	4.3 Baseline Methods

	5 Experiments
	5.1 RQ1. Effectiveness of M2CVD
	5.2 RQ2: Effects of vulnerability description refinement for detection performance
	5.3 RQ3. Effects of hints of fine-tuned models for LLMs
	5.4 RQ4. Effects of different fine-tuned models and LLMs working together
	5.5 RQ5. What are the implications of LLM and detection models having different vulnerability judgments

	6 Ablation experiment
	7 Case Study
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

